discos duros
Particiones primarias
En los equipos PC, originales de IBM, estas particiones tradicionalmente usan una estructura llamada Tabla de Particiones, que apunta al final del registro de arranque maestro. Esta tabla, que no puede contener más de 4 registros de particiones (también llamados partition descriptors), especifica para cada una su principio, final y tamaño en los diferentes modos de direccionamiento, así también como un solo número, llamado partition type, y un marcador que indica si la partición está activa o no (sólo puede haber una partición activa a la vez). El marcador se usa durante el arranque; después de que el BIOS cargue el registro de arranque maestro en la memoria y lo ejecute, el MBR de DOS comprueba la tabla de partición a su final y localiza la partición activa. Entonces carga el sector de arranque de esta partición en memoria y la ejecuta. A diferencia del registro de arranque maestro, generalmente independiente del sistema operativo, el sector de arranque está instalado junto con el sistema operativo y sabe cómo cargar el sistema ubicado en ese disco en particular.
Notar que mientras la presencia de un marcador activo se estandariza, éste normalmente no lo utiliza cualquier programa, aunque sí el gestor de arranque para que no esté obligado a cargar la partición que se marcó como activa. Algunos gestores usan esto para arrancar sistemas operativos desde particiones no activas. Por ejemplo, los gestores LILO, GRUB (muy comunes en el sistema Linux) y XOSL no buscan por encima de la tabla de partición en total; simplemente carga una segunda etapa (que puede ser contenida en el resto del cilindro 0 ó en el sistema de archivos). Después de cargar la segunda etapa se puede usar para cargar el sector de arranque desde cualquiera de las particiones del disco (así habilitando al usuario cargar el sistema desde éste), o si el gestor conoce cómo localizar el kernel (núcleo) del sistema operativo en una de las particiones y cargarlo (para propósitos de recuperación, puede permitir al usuario especificar opciones de kernel adicionales).
Particiones extendidas y lógicas
Cualquier versión del DOS puede leer sólo una partición FAT primaria en el disco duro. Esto unido al deterioro de la FAT con el uso y al aumento de tamaño de los discos movió a Microsoft a crear un esquema mejorado relativamente simple: una de las entradas de la tabla de partición principal pasó a llamarse partición extendida y recibió un número de tipo de partición especial (0x05). El campo inicio de partición tiene la ubicación del primer descriptor de la partición extendida, que a su vez tiene un campo similar con la ubicación de la siguiente; así se crea una lista enlazada de descriptores de partición. Los demás campos de una partición extendida son indefinidos, no tienen espacio asignado y no pueden usarse para almacenar datos. Las particiones iniciales de los elementos de la lista enlazada son las llamadas unidades lógicas; son espacios asignados y pueden almacenar datos. Los sistemas operativos antiguos ignoraban las particiones extendidas con número de tipo 0x05, y la contabilidad se mantenía. Este esquema reemplaza al antiguo ya que todas las particiones de un disco duro se pueden poner dentro de una sola partición extendida. Por alguna razón, Microsoft no actualizó su sistema operativo DOS para arrancar desde una partición extendida, debido a que la necesidad para particiones primarias se preservaron. Por encima de éstas todavía se habría permitido una partición FAT primaria por unidad, significando todas las otras particiones FAT primarias deben tener sus números de tipo de partición prior cambiando al arranque DOS, para que ésta sea capaz de proceder. Esta técnica, usada por varios administradores de arranque populares, se llama ocultación de la partición.IDE permite transferencias de 4 Megas por segundo, aunque dispone de varios métodos para realizar estos movimientos de datos, que veremos en el apartado "Modos de Transferencia". La interfaz IDE supuso la simplificación en el proceso de instalación y configuración de discos duros, y estuvo durante un tiempo a la altura de las exigencias del mercado.
Linux nació gracias a la idea de Linus Torvalds de crear un sistema basado en Unix para máquinas i386. En más de una ocasión, Linus Torvalds ha afirmado que si hubiera sabido de la existencia de los sistemas BSD que ya cumplían lo que hacía Linux, no se habría molestado en modificar Minix. La historia de Linux está fuertemente vinculada a la del proyecto GNU. El proyecto GNU, iniciado en 1983, tiene como objetivo el desarrollo de un sistema Unix completo compuesto enteramente de software libre. Hacia 1991, cuando la primera versión del núcleo Linux fue liberada, el proyecto GNU había producido varios de los componentes del sistema operativo, incluyendo un intérprete de comandos, una biblioteca C y un compilador, pero aún no contaba con el núcleo que permitiera completar el sistema operativo.
BSD son las iniciales de Berkeley Software Distribution (en español, Distribución de Software Berkeley) y se utiliza para identificar un sistema operativo derivado del sistema Unix nacido a partir de los aportes realizados a ese sistema por la Universidad de California en Berkeley.
En los primeros años del sistema Unix sus creadores, los Laboratorios Bell de la compañía AT&T, autorizaron a la Universidad de California en Berkeley y a otras universidades a utilizar el código fuente y adaptarlo a sus necesidades. Durante la década de los setenta y los ochenta Berkeley utilizó el sistema para sus investigaciones en materia de sistemas operativos. Cuando AT&T retiró el permiso de uso a la universidad por motivos comerciales, la universidad promovió la creación de una versión inspirada en el sistema Unix utilizando las aportaciones que ellos habían realizado, permitiendo luego su distribución con fines académicos y al cabo de algún tiempo reduciendo al mínimo las restricciones referente a su copia, distribución o modificación.
Windows 95 es un sistema operativo con interfaz gráfica de usuario híbrido de entre 16 y 32 bits. Fue publicado el 24 de agosto de 1995 por la empresa de software Microsoft con notable éxito de ventas. Durante su desarrollo se conoció como Windows 4 o por el nombre Chicago.
Sustituyó a MS-DOS como sistema operativo y a Windows 3.x como entorno gráfico. Se encuadra dentro de la familia de sistemas operativos de Microsoft denominada Windows 9x. En la versión OSR2 incorporó el sistema de archivos FAT32, además del primer atisbo del entonces novedoso USB.
Windows 98 fue designada por los números de versión internos 4.10.1998, o 4.10.1998A si había sido actualizado con el CD de seguridad de Microsoft. Windows 98 Segunda Edición está designado por los números de versión internos 4.10.2222A ó 4.10.2222B si había sido actualizado con el CD de seguridad de Microsoft.
Windows XP
Microsoft producía dos líneas separadas de sistemas operativos. Una línea estaba dirigida a las computadoras domésticas basada en un Núcleo de MS-DOS y representada por Windows 95, Windows 98 y Windows Me, mientras que la otra, basada en un Núcleo "NT" es representada por Windows NT y Windows 2000, estaba pensada para el mercado corporativo y empresarial e incluía versiones especiales para servidores. Windows XP es el intento por parte de Microsoft de ofrecer un único sistema operativo multiuso, con el inconveniente de eliminar definitivamente el soporte para los programas basados en MS-DOS del sistema operativo.
* Windows XP Home está destinada al mercado doméstico, esta versión no tiene originalmente soporte para SMP, aunque con los Service Pack se utiliza dicha función, gracias a esto los procesadores con HT se pueden utilizar con esta versión.
* Windows XP Professional dispone de características adicionales diseñadas para entornos empresariales, como la autenticación por red y el soporte multiprocesador.
En noviembre de 2002, Microsoft sacó a la venta dos nuevas versiones de Windows XP para hardware específico:
* Windows XP Media Center Edition para PCs especiales.
Inicialmente, dichos PCs eran los "HP Media Center Computer" y la serie "Alienware Navigator". "Windows XP Media Center Edition" debía ser vendido con uno de estos ordenadores, no pudiéndose encontrar en tiendas.
* Windows XP Tablet PC Edition para ordenadores portátiles especiales diseñados con una pantalla táctil que admiten escritura a mano y pantallas tamaño portarretratos.
* Windows XP Corporate Edition
Microsoft diseño un sistema orientado a Empresas y Corporaciones llamado Microsoft Windows XP Corporate Edition, algo similar al Windows XP Profesional, solo que diseñado especialmente a Empresas esta edición no esta bajo los métodos de ventas tradicionales
Adicionalmente, el 28 de marzo de 2003, Microsoft hizo pública otra versión:
* Windows XP 64 Bit Edition para fabricantes cuyo destino son los procesadores AMD 64 e Intel con extensiones de 64 bits.
Tiempo después, en junio de 2005, Microsoft hizo pública otra versión:
* Windows XP Starter Edition destinado a países con habitantes con pocos recursos (donde Sistemas operativos como GNU/Linux comienzan a hacerse con un hueco del mercado) o con altos niveles de copia ilegal. Se puede considerar un Windows XP normal, con características limitadas.
Debido a una sentencia judicial de la Unión Europea, Microsoft lanzó otra versión:
* Windows XP N Edition: Versión Home y Professional de Windows XP pero sin Windows Media Player, esta versión se distribuye únicamente en la Unión Europea por problemas legales.
Windows XP 64 Bits
Windows XP 64 bits fue diseñado para sitios basados en procesadores Itanium y compatible con la mayoría de procesadores de 64 bits. Los procesadores AMD también son compatibles con este sistema operativo.
Microsoft había apoyado estos microprocesadores en versiones anteriores de Windows NT (incluyendo los DEC Alpha y MIPS R4000). Los archivos necesarios para estos procesadores se incluían en el CD y no requerían la compra de versiones separadas.
Windows XP Media Center Edition
Windows XP Media Center Edition fue hecha especialmente para Media Centers. Originalmente este venía disponible en algunas media centers y no podía adquirirse por separado. En el 2003 fue actualizado con "Windows XP Media Center Edition 2003" con características adicionales tales como la posibilidad de escuchar Radio FM. Adicionalmente otras actualizaciones se lanzaron en 2004 y en el 2005, que fue la primer versión para desarrolladores.
Windows XP Tablet PC Edition
Especialmente para llamadas Tablet PC, Microsoft diseñó Windows XP Tablet PC Edition. Esta edición es compatible con la pluma diseñada para la pantalla, soporta notas escritas y pantallas retro-orientadas. No puede ser comprado por separado.
Windows XP Corporate Edition
Microsoft diseño un sistema orientado a Empresas y Corporaciones llamado Microsoft Windows XP Corporate Edition, algo similar al Windows XP Profesional, solo que diseñado especialmente para Empresas esta edición no esta bajo los métodos de ventas tradicionales.
Windows XP Embedded
Esta edición Windows XP Embedded es diseñada aparatos electrónicos tales como kioscos/ATM, dispositivos médicos, VoIP.
Solaris es un sistema operativo desarrollado por Sun Microsystems. Es un sistema certificado como una versión de UNIX. Aunque Solaris en sí mismo aún es software propietario, la parte principal del sistema operativo se ha liberado como un proyecto de software libre denominado Opensolaris. Solaris puede considerarse uno de los sistemas operativos más avanzados[cita requerida]. Sun denomina así a su sistema operativo.
NTFS (New Technology File System). Es un sistema de archivos diseñado específicamente para Windows NT, y utilizado por las versiones recientes del sistema operativo Windows. Ha reemplazado al sistema FAT utilizado en versiones antiguas de Windows y en DOS.
Fue creado para lograr un sistema de archivos eficiente y seguro y está basado en el sistema de archivos HPFS de IBM/Microsoft usado en el sistema operativo OS/2. También tiene características del filesystem HFS diseñado por Apple.
NTFS permite definir el tamaño del clúster de forma independiente al tamaño de la partición. El tamaño mínimo del bloque es de 512 bytes. Este sistema también admite compresión nativa de archivos y encriptación.
Es un sistema ideal para particiones de gran tamaño, pudiendo manejar discos de hasta 2 terabytes.
Windows NT, 2000, 2003, XP y Vista soportan el sistema NTFS.
FAT Tabla de Asignación de Archivos, en inglés, File Allocation Table (FAT) es un sistema de archivos desarrollado para MS-DOS, así como el sistema de archivos principal de las ediciones no empresariales de Microsoft Windows hasta Windows Me.
FAT es relativamente sencillo. A causa de ello, es un formato popular para disquetes admitido prácticamente por todos los sistemas operativos existentes para Computador personal. Se utiliza como mecanismo de intercambio de datos entre sistemas operativos distintos que coexisten en el mismo computador, lo que se conoce como entorno multiarranque. También se utiliza en tarjetas de memoria y dispositivos similares.
Las implementaciones más extendidas de FAT tienen algunas desventajas. Cuando se borran y se escriben nuevos archivos tiende a dejar fragmentos dispersos de éstos por todo el soporte. Con el tiempo, esto hace que el proceso de lectura o escritura sea cada vez más lento. La denominada desfragmentación es la solución a esto, pero es un proceso largo que debe repetirse regularmente para mantener el sistema de archivos en perfectas condiciones. FAT tampoco fue diseñado para ser redundante ante fallos. Inicialmente solamente soportaba nombres cortos de archivo: ocho caracteres para el nombre más tres para la extensión. También carece de permisos de seguridad: cualquier usuario puede acceder a cualquier archivo.
FAT32 fue la respuesta para superar el límite de tamaño de FAT16 al mismo tiempo que se mantenía la compatibilidad con MS-DOS en modo real. Microsoft decidió implementar una nueva generación de FAT utilizando direcciones de cluster de 32 bits (aunque sólo 28 de esos bits se utilizaban realmente).
En teoría, esto debería permitir aproximadamente 268.435.538 clusters, arrojando tamaños de almacenamiento cercanos a los dos terabytes. Sin embargo, debido a limitaciones en la utilidad ScanDisk de Microsoft, no se permite que FAT32 crezca más allá de 4.177.920 clusters por partición (es decir, unos 124 gigabytes). Posteriormente, Windows 2000 y XP situaron el límite de FAT32 en los 32 gigabytes. Microsoft afirma que es una decisión de diseño, sin embargo, es capaz de leer particiones mayores creadas por otros medios.
FAT32 apareció por primera vez en Windows 95 OSR2. Era necesario reformatear para usar las ventajas de FAT32. Curiosamente, DriveSpace 3 (incluido con Windows 95 y 98) no lo soportaba. Windows 98 incorporó una herramienta para convertir de FAT16 a FAT32 sin pérdida de los datos. Este soporte no estuvo disponible en la línea empresarial hasta Windows 2000.
El tamaño máximo de un archivo en FAT32 es 4 gigabytes, lo que resulta engorroso para aplicaciones de captura y edición de video, ya que los archivos generados por éstas superan fácilmente ese límite.
29/8/08
INTERNETEl cable de par trenzado es una forma de conexión en la que dos conductores son entrelazados para cancelar las interferencias electromagnéticas (IEM) de fuentes externas y la diafonía de los cables adyacentes. El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, el cual determina el acoplamiento magnético en la señal, es reducido. En la operación de balanceado de pares, los dos cables suelen llevar señales iguales y opuestas (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se cancela mutuamente en esta sustracción debido a que ambos cables están expuestos a IEM similares. La tasa de trenzado, usualmente definida en vueltas por metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto m ayor es el número de vueltas, mayor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de IEM. El cable de par trenzado es uno de los más antiguos, surgió en 1985. Este tipo de cable está formado por hilos, que son de cobre o de aluminio y estos hilos están trenzados entre sí para que las propiedades eléctricas estén estables y también, para evitar las interferencias que pueden provocar los hilos cercanos. Este tipo de cable se utiliza cuando: La LAN tiene un presupuesto limitado o se va a hacer una instalación sencilla, con conexiones simples. Este tipo de cable NO se utiliza cuando: Se necesita un gran nivel de seguridad en la LAN o la velocidad de transmisión e s alta y son redes de gran distancia. Los colores del aislante están estandarizados, y son los siguientes: Naranja/ Blanco-Naranja, Verde/ Blanco-Verde, Azul/ Blanco-Azul, Marrón /Blanco-Marrón . El cable coaxial es un cable eléctrico formado por dos conductores concéntricos, uno central o núcleo, formado por un hilo sólido o trenzado de cobre (llamado positivo o vivo), y uno exterior en forma de tubo o vaina, y formado por una malla trenzada de cobre o aluminio o bien por un tubo, en caso de cables semirrígidos. Este último produce un efecto de blindaje y además sirve como retorno de las corrientes. El primero está separado del segundo por una capa aislante llamada dieléctrico. De la calidad del dieléctrico dependerá principalmente la calidad del cable. Y todo el conjunto puede estar protegido por una cubierta aislante. Hacia los años 80 el cable coaxial fue el más usado, pero era muy fácil intervenir la línea y obtener información de los usuarios sin su consentimiento y se sustituyó por la fibra óptica en distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior, lo que justifica su mayor costo y su instalación más delicada.La característica principal de la familia RG-58 es el núcleo central de cobre. Tipos: - RG-58/U: Núcleo de cobre sólido. - RG-58 A/U: Núcleo de hilos trenzados. - RG-59: Transmisión en banda ancha (TV). - RG-60: Mayor diámetro que el RG-59 y considerado para frecuencias más altas que este, pero también utilizado para transmisiones de banda ancha. - RG-62: Redes ARCnet.Cable coaxial RG-59.A: Cubierta protectora de plásticoB: Malla de cobreC: AislanteD: Núcleo de cobreEn electromagnetismo y en telecomunicación, una guía de onda es cualquier estructura física que guía ondas electromagnéticas. La primera guía de onda fue propuesta por Joseph John Thomson en 1893 y experimentalmente verificada por O. J. Lodge en 1894. El análisis matemático de los modos de propagación de un cilindro metálico hueco fue realizado por primera vez por Lord Rayleigh en 1897. Dependiendo de la frecuencia, se pueden construir con materiales conductores o dieléctricos. Generalmente, cuanto más baja es la frecuencia, mayor es la guía de onda. Por ejemplo, el espacio entre la superficie terrestre y la ionosfera la atmósfera actúa como una guía de onda. Las dimensiones limitadas de la Tierra provocan que esta guía de onda actúe como cavidad resonante para las ondas electromagnéticas en la banda ELF. (véase Resonancia Schumann). Las guías de onda también puede tener dimensiones de pocos centímetros. Un ejemplo puede ser aquellas utilizadas por los satélites de EHF y por los radares.Un radioenlace terrestre o microondas terrestre provee conectividad entre dos sitios (estaciones terrenas) en línea de vista (Line-of-Sight, LOS) usando equipo de radio con frecuencias de portadora por encima de 1 GHz. La forma de onda emitida puede ser analógica (convencionalmente en FM) o digital. Las microondas son ondas electromagnéticas cuyas frecuencias se encuentran dentro del espectro de las super altas frecuencias, SHF.El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz. Las ondas electromagnéticas de esta región del espectro se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. La radiofrecuencia se puede dividir en las siguientes bandas del espectro:A partir de 1 GHz las bandas entran dentro del espectro de las microondas. Por encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser transparente. Las bandas ELF, SLF, ULF y VLF comparten el espectro de la AF (audiofrecuencia), que se encuentra entre 20 y 20000 Hz aproximadamente. Sin embargo, éstas se tratan de ondas de presión, como el sonido, por lo que se desplazan a la velocidad del sonido sobre un medio material. Mientras que las ondas de radiofrecuencia, al ser ondas electromagnéticas, se desplazan a la velocidad de la luz y sin necesidad de un medio material. Los conectores eléctricos diseñados para trabajar con frecuencias de radio se conocen como conectores RF. RF también es el nombre del conector estándar de audio/video, también conocido como BNC (BayoNet Connector). Láseres de semiconductorsLos transistores aprovechan las propiedades especiales de un tipo de materiales conocidos como semiconductores. La corriente eléctrica se origina con el movimiento de los electrones. Metales comunes como el cobre son buenos conductores de la electricidad debido a que sus electrones no están unidos estrechamente al núcleo del átomo y son atraídos libremente por una carga positiva. Otras sustancias como, por ejemplo, el caucho, son aislantes, malos conductores de la electricidad, dado que sus electrones no se mueven libremente. Los semiconductores, como su nombre indica, son algo intermedio entre estos dos conceptos; aunque normalmente se comportan como aislantes, es posible que en algunos casos conduzcan la electricidad. a b c Cómo funcionan los láseres.(a) Un conjunto de átomos de láser con sus niveles cuánticos representados.(b) El proceso de bombeo óptico, en el que un gran número de átomos atrapados se estimulan hacia un nivel de energía más alto.(c) La emisión estimulada y la oscilación del láser.Un rayo de luz, ajustado a la frecuencia de transmisión entre los dos niveles, se envía a través del conjunto de átomos, lo que provoca que aquellos que se encuentran en un nivel de energía más alto cedan su energía al rayo de luz. Los espejos alineados en cada extremo de la cavidad del láser forman un resonador óptico, lo que provoca que el rayo de salida sea altamente monocromático o altamente direccional.Los enlaces infrarrojos se encuentran limitados por el espacio y los obstáculos. El hecho de que la longitud de onda de los rayos infrarrojos sea tan pequeña (850-900 nm), hace que no pueda propagarse de la misma forma en que lo hacen las señales de radio. Es por este motivo que las redes infrarrojas suelen estar dirigidas a oficinas o plantas de oficinas de reducido tamaño. Algunas empresas, van un poco más allá, transmitiendo datos de un edificio a otro mediante la colocación de antenas en las ventanas de cada edificio. Por otro lado, las transmisiones infrarrojas presentan la ventaja, frente a las de radio, de no transmitir a frecuencias bajas, donde el espectro está más limitado, no teniendo que restringir, por tanto, su ancho de banda a las frecuencias libres.Tecnología: Satelital Internet por satélite o conexión a Internet vía satélite es el método de conexión a Internet por un usuario utilizando como medio de comunicación el satélite. El Satelite es el sistema ideal de acceso para aquellos lugares donde no llega el cable o la telefonía. Pero también en la misma ciudad constituye un excelente sistema, debido a la alta saturación a la que están sometidas las líneas convencionales y un ancho de banda muy limitado. Nuestro telepuerto esta ubicado en Machala que nos enlaza al mundo a través del satélite SATMET 5, este canal junto con la fibra óptica nos permite brindarle el mejor servicio de acceso a internet. La velocidad de acceso satelital sin ser de inferior calidad es menor a la de la fibra óptica, nuestro telepuerto ofrece un tiempo de respuesta promedio a 600 mms a cualquier lugar del mundo, esto garantiza entre otro tipo de servicios navegación, transmisión de archivos, voz sobre ip y video conferencia de alta calidad. Particion Discos DurosMartes, 22 de Julio de 2008 04:16 p.m.Particiones primarias En los equipos PC, originales de IBM, estas particiones tradicionalmente usan una estructura llamada Tabla de Particiones, que apunta al final del registro de arranque maestro. Esta tabla, que no puede contener más de 4 registros de particiones (también llamados partition descriptors), especifica para cada una su principio, final y tamaño en los diferentes modos de direccionamiento, así también como un solo número, llamado partition type, y un marcador que indica si la partición está activa o no (sólo puede haber una partición activa a la vez). El marcador se usa durante el arranque; después de que el BIOS cargue el registro de arranque maestro en la memoria y lo ejecute, el MBR de DOS comprueba la tabla de partición a su final y localiza la partición activa. Entonces carga el sector de arranque de esta partición en memoria y la ejecuta. A diferencia del registro de arranque maestro, generalmente independiente del sistema operativo, el sector de arranque está instalado junto con el sistema operativo y sabe cómo cargar el sistema ubicado en ese disco en particular. Notar que mientras la presencia de un marcador activo se estandariza, éste normalmente no lo utiliza cualquier programa, aunque sí el gestor de arranque para que no esté obligado a cargar la partición que se marcó como activa. Algunos gestores usan esto para arrancar sistemas operativos desde particiones no activas. Por ejemplo, los gestores LILO, GRUB (muy comunes en el sistema Linux) y XOSL no buscan por encima de la tabla de partición en total; simplemente carga una segunda etapa (que puede ser contenida en el resto del cilindro 0 ó en el sistema de archivos). Después de cargar la segunda etapa se puede usar para cargar el sector de arranque desde cualquiera de las particiones del disco (así habilitando al usuario cargar el sistema desde éste), o si el gestor conoce cómo localizar el kernel (núcleo) del sistema operativo en una de las particiones y cargarlo (para propósitos de recuperación, puede permitir al usuario especificar opciones de kernel adicionales). Particiones extendidas y lógicas Cualquier versión del DOS puede leer sólo una partición FAT primaria en el disco duro. Esto unido al deterioro de la FAT con el uso y al aumento de tamaño de los discos movió a Microsoft a crear un esquema mejorado relativamente simple: una de las entradas de la tabla de partición principal pasó a llamarse partición extendida y recibió un número de tipo de partición especial (0x05). El campo inicio de partición tiene la ubicación del primer descriptor de la partición extendida, que a su vez tiene un campo similar con la ubicación de la siguiente; así se crea una lista enlazada de descriptores de partición. Los demás campos de una partición extendida son indefinidos, no tienen espacio asignado y no pueden usarse para almacenar datos. Las particiones iniciales de los elementos de la lista enlazada son las llamadas unidades lógicas; son espacios asignados y pueden almacenar datos. Los sistemas operativos antiguos ignoraban las particiones extendidas con número de tipo 0x05, y la contabilidad se mantenía. Este esquema reemplaza al antiguo ya que todas las particiones de un disco duro se pueden poner dentro de una sola partición extendida. Por alguna razón, Microsoft no actualizó su sistema operativo DOS para arrancar desde una partición extendida, debido a que la necesidad para particiones primarias se preservaron. Por encima de éstas todavía se habría permitido una partición FAT primaria por unidad, significando todas las otras particiones FAT primarias deben tener sus números de tipo de partición prior cambiando al arranque DOS, para que ésta sea capaz de proceder. Esta técnica, usada por varios administradores de arranque populares, se llama ocultación de la partición.IDE permite transferencias de 4 Megas por segundo, aunque dispone de varios métodos para realizar estos movimientos de datos, que veremos en el apartado "Modos de Transferencia". La interfaz IDE supuso la simplificación en el proceso de instalación y configuración de discos duros, y estuvo durante un tiempo a la altura de las exigencias del mercado. Linux nació gracias a la idea de Linus Torvalds de crear un sistema basado en Unix para máquinas i386. En más de una ocasión, Linus Torvalds ha afirmado que si hubiera sabido de la existencia de los sistemas BSD que ya cumplían lo que hacía Linux, no se habría molestado en modificar Minix. La historia de Linux está fuertemente vinculada a la del proyecto GNU. El proyecto GNU, iniciado en 1983, tiene como objetivo el desarrollo de un sistema Unix completo compuesto enteramente de software libre. Hacia 1991, cuando la primera versión del núcleo Linux fue liberada, el proyecto GNU había producido varios de los componentes del sistema operativo, incluyendo un intérprete de comandos, una biblioteca C y un compilador, pero aún no contaba con el núcleo que permitiera completar el sistema operativo. BSD son las iniciales de Berkeley Software Distribution (en español, Distribución de Software Berkeley) y se utiliza para identificar un sistema operativo derivado del sistema Unix nacido a partir de los aportes realizados a ese sistema por la Universidad de California en Berkeley. En los primeros años del sistema Unix sus creadores, los Laboratorios Bell de la compañía AT&T, autorizaron a la Universidad de California en Berkeley y a otras universidades a utilizar el código fuente y adaptarlo a sus necesidades. Durante la década de los setenta y los ochenta Berkeley utilizó el sistema para sus investigaciones en materia de sistemas operativos. Cuando AT&T retiró el permiso de uso a la universidad por motivos comerciales, la universidad promovió la creación de una versión inspirada en el sistema Unix utilizando las aportaciones que ellos habían realizado, permitiendo luego su distribución con fines académicos y al cabo de algún tiempo reduciendo al mínimo las restricciones referente a su copia, distribución o modificación. Windows 95 es un sistema operativo con interfaz gráfica de usuario híbrido de entre 16 y 32 bits. Fue publicado el 24 de agosto de 1995 por la empresa de software Microsoft con notable éxito de ventas. Durante su desarrollo se conoció como Windows 4 o por el nombre Chicago. Sustituyó a MS-DOS como sistema operativo y a Windows 3.x como entorno gráfico. Se encuadra dentro de la familia de sistemas operativos de Microsoft denominada Windows 9x. En la versión OSR2 incorporó el sistema de archivos FAT32, además del primer atisbo del entonces novedoso USB. Windows 98 fue designada por los números de versión internos 4.10.1998, o 4.10.1998A si había sido actualizado con el CD de seguridad de Microsoft. Windows 98 Segunda Edición está designado por los números de versión internos 4.10.2222A ó 4.10.2222B si había sido actualizado con el CD de seguridad de Microsoft. Windows XP Microsoft producía dos líneas separadas de sistemas operativos. Una línea estaba dirigida a las computadoras domésticas basada en un Núcleo de MS-DOS y representada por Windows 95, Windows 98 y Windows Me, mientras que la otra, basada en un Núcleo "NT" es representada por Windows NT y Windows 2000, estaba pensada para el mercado corporativo y empresarial e incluía versiones especiales para servidores. Windows XP es el intento por parte de Microsoft de ofrecer un único sistema operativo multiuso, con el inconveniente de eliminar definitivamente el soporte para los programas basados en MS-DOS del sistema operativo. * Windows XP Home está destinada al mercado doméstico, esta versión no tiene originalmente soporte para SMP, aunque con los Service Pack se utiliza dicha función, gracias a esto los procesadores con HT se pueden utilizar con esta versión. * Windows XP Professional dispone de características adicionales diseñadas para entornos empresariales, como la autenticación por red y el soporte multiprocesador. En noviembre de 2002, Microsoft sacó a la venta dos nuevas versiones de Windows XP para hardware específico: * Windows XP Media Center Edition para PCs especiales. Inicialmente, dichos PCs eran los "HP Media Center Computer" y la serie "Alienware Navigator". "Windows XP Media Center Edition" debía ser vendido con uno de estos ordenadores, no pudiéndose encontrar en tiendas. * Windows XP Tablet PC Edition para ordenadores portátiles especiales diseñados con una pantalla táctil que admiten escritura a mano y pantallas tamaño portarretratos. * Windows XP Corporate Edition Microsoft diseño un sistema orientado a Empresas y Corporaciones llamado Microsoft Windows XP Corporate Edition, algo similar al Windows XP Profesional, solo que diseñado especialmente a Empresas esta edición no esta bajo los métodos de ventas tradicionales Adicionalmente, el 28 de marzo de 2003, Microsoft hizo pública otra versión: * Windows XP 64 Bit Edition para fabricantes cuyo destino son los procesadores AMD 64 e Intel con extensiones de 64 bits. Tiempo después, en junio de 2005, Microsoft hizo pública otra versión: * Windows XP Starter Edition destinado a países con habitantes con pocos recursos (donde Sistemas operativos como GNU/Linux comienzan a hacerse con un hueco del mercado) o con altos niveles de copia ilegal. Se puede considerar un Windows XP normal, con características limitadas. Debido a una sentencia judicial de la Unión Europea, Microsoft lanzó otra versión: * Windows XP N Edition: Versión Home y Professional de Windows XP pero sin Windows Media Player, esta versión se distribuye únicamente en la Unión Europea por problemas legales. Windows XP 64 Bits Windows XP 64 bits fue diseñado para sitios basados en procesadores Itanium y compatible con la mayoría de procesadores de 64 bits. Los procesadores AMD también son compatibles con este sistema operativo. Microsoft había apoyado estos microprocesadores en versiones anteriores de Windows NT (incluyendo los DEC Alpha y MIPS R4000). Los archivos necesarios para estos procesadores se incluían en el CD y no requerían la compra de versiones separadas. Windows XP Media Center Edition Windows XP Media Center Edition fue hecha especialmente para Media Centers. Originalmente este venía disponible en algunas media centers y no podía adquirirse por separado. En el 2003 fue actualizado con "Windows XP Media Center Edition 2003" con características adicionales tales como la posibilidad de escuchar Radio FM. Adicionalmente otras actualizaciones se lanzaron en 2004 y en el 2005, que fue la primer versión para desarrolladores. Windows XP Tablet PC Edition Especialmente para llamadas Tablet PC, Microsoft diseñó Windows XP Tablet PC Edition. Esta edición es compatible con la pluma diseñada para la pantalla, soporta notas escritas y pantallas retro-orientadas. No puede ser comprado por separado. Windows XP Corporate Edition Microsoft diseño un sistema orientado a Empresas y Corporaciones llamado Microsoft Windows XP Corporate Edition, algo similar al Windows XP Profesional, solo que diseñado especialmente para Empresas esta edición no esta bajo los métodos de ventas tradicionales. Windows XP Embedded Esta edición Windows XP Embedded es diseñada aparatos electrónicos tales como kioscos/ATM, dispositivos médicos, VoIP. Solaris es un sistema operativo desarrollado por Sun Microsystems. Es un sistema certificado como una versión de UNIX. Aunque Solaris en sí mismo aún es software propietario, la parte principal del sistema operativo se ha liberado como un proyecto de software libre denominado Opensolaris. Solaris puede considerarse uno de los sistemas operativos más avanzados[cita requerida]. Sun denomina así a su sistema operativo. NTFS (New Technology File System). Es un sistema de archivos diseñado específicamente para Windows NT, y utilizado por las versiones recientes del sistema operativo Windows. Ha reemplazado al sistema FAT utilizado en versiones antiguas de Windows y en DOS. Fue creado para lograr un sistema de archivos eficiente y seguro y está basado en el sistema de archivos HPFS de IBM/Microsoft usado en el sistema operativo OS/2. También tiene características del filesystem HFS diseñado por Apple. NTFS permite definir el tamaño del clúster de forma independiente al tamaño de la partición. El tamaño mínimo del bloque es de 512 bytes. Este sistema también admite compresión nativa de archivos y encriptación. Es un sistema ideal para particiones de gran tamaño, pudiendo manejar discos de hasta 2 terabytes. Windows NT, 2000, 2003, XP y Vista soportan el sistema NTFS. FAT Tabla de Asignación de Archivos, en inglés, File Allocation Table (FAT) es un sistema de archivos desarrollado para MS-DOS, así como el sistema de archivos principal de las ediciones no empresariales de Microsoft Windows hasta Windows Me. FAT es relativamente sencillo. A causa de ello, es un formato popular para disquetes admitido prácticamente por todos los sistemas operativos existentes para Computador personal. Se utiliza como mecanismo de intercambio de datos entre sistemas operativos distintos que coexisten en el mismo computador, lo que se conoce como entorno multiarranque. También se utiliza en tarjetas de memoria y dispositivos similares. Las implementaciones más extendidas de FAT tienen algunas desventajas. Cuando se borran y se escriben nuevos archivos tiende a dejar fragmentos dispersos de éstos por todo el soporte. Con el tiempo, esto hace que el proceso de lectura o escritura sea cada vez más lento. La denominada desfragmentación es la solución a esto, pero es un proceso largo que debe repetirse regularmente para mantener el sistema de archivos en perfectas condiciones. FAT tampoco fue diseñado para ser redundante ante fallos. Inicialmente solamente soportaba nombres cortos de archivo: ocho caracteres para el nombre más tres para la extensión. También carece de permisos de seguridad: cualquier usuario puede acceder a cualquier archivo. FAT32 fue la respuesta para superar el límite de tamaño de FAT16 al mismo tiempo que se mantenía la compatibilidad con MS-DOS en modo real. Microsoft decidió implementar una nueva generación de FAT utilizando direcciones de cluster de 32 bits (aunque sólo 28 de esos bits se utilizaban realmente). En teoría, esto debería permitir aproximadamente 268.435.538 clusters, arrojando tamaños de almacenamiento cercanos a los dos terabytes. Sin embargo, debido a limitaciones en la utilidad ScanDisk de Microsoft, no se permite que FAT32 crezca más allá de 4.177.920 clusters por partición (es decir, unos 124 gigabytes). Posteriormente, Windows 2000 y XP situaron el límite de FAT32 en los 32 gigabytes. Microsoft afirma que es una decisión de diseño, sin embargo, es capaz de leer particiones mayores creadas por otros medios. FAT32 apareció por primera vez en Windows 95 OSR2. Era necesario reformatear para usar las ventajas de FAT32. Curiosamente, DriveSpace 3 (incluido con Windows 95 y 98) no lo soportaba. Windows 98 incorporó una herramienta para convertir de FAT16 a FAT32 sin pérdida de los datos. Este soporte no estuvo disponible en la línea empresarial hasta Windows 2000. El tamaño máximo de un archivo en FAT32 es 4 gigabytes, lo que resulta engorroso para aplicaciones de captura y edición de video, ya que los archivos generados por éstas superan fácilmente ese límite.
memoria ram
¿ Qué es... la memoria RAM?
La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente
Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:
La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.
Tipos de RAM
Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque mas adelante en este Informe encontrará prácticamente todos los demás tipos.
DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.
Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.
Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
PC100: o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.
PC133: o SDRAM de 133 MHz. La más moderna (y recomendable).
SIMMs y DIMMs
Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.
SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).
Otros tipos de RAM
BEDO (Burst-EDO): una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.
Memorias con paridad: consisten en añadir a cualquiera de los tipos anteriores un chip que realiza una operación con los datos cuando entran en el chip y otra cuando salen. Si el resultado ha variado, se ha producido un error y los datos ya no son fiables. Dicho así, parece una ventaja; sin embargo, el ordenador sólo avisa de que el error se ha producido, no lo corrige. Es más, estos errores son tan improbables que la mayor parte de los chips no los sufren jamás aunque estén funcionando durante años; por ello, hace años que todas las memorias se fabrican sin paridad.
ECC: memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO-ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones realmente críticas. Usada en servidores y mainframes.
Memorias de Vídeo: para tarjetas gráficas. De menor a mayor rendimiento, pueden ser: DRAM -> FPM -> EDO -> VRAM -> WRAM -> SDRAM -> SGRAM
DDR-SDRAM: (Doble Data Rate)
¿Cómo es físicamente la DDR-SDRAM? O lo que es lo mismo: ¿puedo instalarla en mi "antigua" placa base? Lamentablemente, la respuesta es un NO rotundo.
Los módulos de memoria DDR-SDRAM (o DDR) son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset nuevo.
Hablando del voltaje: en principio debería ser de 2,5 V, una reducción del 30% respecto a los actuales 3,3 V de la SDRAM.
¿Cómo funciona la DDR-SDRAM?
Consiste en enviar los datos 2 veces por cada señal de reloj, una vez en cada extremo de la señal (el ascendente y el descendente), en lugar de enviar datos sólo en la parte ascendente de la señal.
De esta forma, un aparato con tecnología DDR que funcione con una señal de reloj "real", "física", de por ejemplo 100 MHz, enviará tantos datos como otro sin tecnología DDR que funcione a 200 MHz. Por ello, las velocidades de reloj de los aparatos DDR se suelen dar en lo que podríamos llamar "MHz efectivos o equivalentes" (en nuestro ejemplo, 200 MHz, "100 MHz x 2").
Uno de los problemas de la memoria Rambus: funciona a 266 MHz "físicos" o más, y resulta muy difícil (y cara) de fabricar.
La tecnología DDR está de moda últimamente, bajo éste u otro nombre. Además de las numerosísimas tarjetas gráficas con memoria de vídeo DDR-SDRAM, tenemos por ejemplo los microprocesadores AMD Athlon y Duron, cuyo bus de 200 MHz realmente es de "100 x 2", "100 MHz con doble aprovechamiento de señal"; o el AGP 2X ó 4X, con 66 MHz "físicos" aprovechados doble o cuádruplemente, ya que una tarjeta gráfica con un bus de 266 MHz "físicos" sería difícil de fabricar... y extremadamente cara.
(Atención, esto no quiere decir que una tarjeta AGP 4X sea en la realidad el doble de rápida que una 2X, ni mucho menos: a veces se "notan" IGUAL de rápidas, por motivos que no vienen al caso ahora.)
Bien, pues la DDR-SDRAM es el concepto DDR aplicado a la memoria SDRAM. Y la SDRAM no es otra que nuestra conocida PC66, PC100 y PC133, la memoria que se utiliza actualmente en casi la totalidad de los PCs normales; los 133 MHz de la PC133 son ya una cosa difícil de superar sin subir mucho los precios, y por ello la introducción del DDR.
Tipos de DDR-SDRAM y nomenclatura
Por supuesto, existe memoria DDR de diferentes clases, categorías y precios.
Lo primero, puede funcionar a 100 o 133 MHz (de nuevo, "físicos"); algo lógico, ya que se trata de SDRAM con DDR, y la SDRAM funciona a 66, 100 ó 133 MHz (por cierto, no existe DDR a 66 MHz). Si consideramos los MHz "equivalentes", estaríamos ante memorias de 200 ó 266 MHz.
En el primer caso es capaz de transmitir 1,6 GB/s (1600 MB/s), y en el segundo 2,1 GB/s (2133 MB/s). Al principio se las conocía como PC200 y PC266, siguiendo el sistema de clasificación por MHz utilizado con la SDRAM. Pero llegó Rambus y decidió que sus memorias se llamarían PC600, PC700 y PC800, también según el sistema de los MHz. Como esto haría que parecieran muchísimo más rápidas que la DDR (algo que NO SUCEDE, porque funcionan de una forma completamente distinta), se decidió denominarlas según su capacidad de transferencia en MB/s: PC1600 y PC2100 (PC2133 es poco comercial, por lo visto).
2.1- ¿Cuánta memoria debo tener?
Se podría decir que: cuanta más memoria RAM, mejor. Claro está que la memoria RAM vale dinero, así que se intentara llegar a un compromiso satisfactorio, pero nunca quedándose cortos. Ante todo, de todas formas no nos podemos quejar en los precios: hasta antes del 1996 el costo de la memoria había mantenido un costo constante de alrededor de US 40 por megabyte . A finales de 1996 los precios se habían reducido a US 4 el megabyte (una caída del 901% en menos de un año). Hoy en día la memoria RAM está a menos de US 1 por megabyte.
La cantidad de RAM necesaria es función únicamente de para qué se use un ordenador, lo que condiciona a qué sistema operativo y programas se van a usar, se recomienda una cantidad mínima de 64 MB de RAM, y si es posible incluso 128.
¿Cuánta memoria es "suficiente"?
En el mundo de los computadores, la duda siempre parece estar en si comprar un microprocesador Intel o AMD, en si será un Pentium III o un Athlon, un Celeron o un K6-2, y a cuántos MHz funcionará. Cuando se llega al tema de la memoria, la mayor parte de los compradores aceptan la cantidad que trae el sistema por defecto, lo que puede ser un gran error.
Lo más importante al comprar un computador es que sea equilibrado; nada de 800 MHz para sólo 32 MB de memoria RAM, o una tarjeta 3D de alta gama para un monitor pequeño y de mala calidad. Y como intentaremos demostrar, la cantidad de memoria del PC es uno de los factores que más puede afectar al rendimiento.
Por cierto, este trabajo se centrará en Windows 95 y 98, ya que son con diferencia los sistemas operativos más utilizados. Los resultados son perfectamente aplicables a Linux, "excepto" por su mayor estabilidad y mejor aprovechamiento de la memoria; en cuanto a Windows NT 4 y 2000, actúan de forma similar a Linux, si bien consumen entre 16 y 40 MB más de memoria que los Windows "domésticos".
Windows y la memoria virtual
Por supuesto, cuantos más programas utilicemos y más complejos sean, más memoria necesitaremos; esto seguro que no sorprenderá a nadie, pero lo que sí puede que nos sorprenda es la gran cantidad de memoria que se utiliza tan sólo para arrancar el sistema operativo. Observen los siguientes datos:
Programas cargados
RAM utilizada
Sólo Windows 95
21 MB
Sólo Windows 98
27 MB
Sólo Windows 98, tras varios meses de funcionamiento y diversas instalaciones de programas
35 MB
Windows 98, Microsoft Word 97 e Internet Explorer 4
46 MB
Windows 98 y AutoCAD 14 (con un dibujo sencillo en 2D)
55 MB
Como puede ver, sólo la carga del sistema operativo puede consumir TODA la memoria con la que se venden algunos computadores de gama baja. Además, Windows 98 utiliza más memoria que Windows 95 debido entre otros temas a su integración con Microsoft Internet Explorer. Para terminar de complicar el tema, ambos Windows tienden a aumentar su tamaño y su consumo de memoria según vamos instalando programas, o sencillamente según pasa el tiempo, sin instalar nada.
Pese a esto, el hecho es que los computadores siguen trabajando cuando se les agota la memoria RAM, algo que sería imposible si no fuera por la denominada "memoria virtual", que no es sino espacio del disco duro que se utiliza como si fuera memoria RAM.
Sin embargo, esta memoria virtual tiene varios inconvenientes; el principal es su velocidad, ya que es muchísimo más lenta que la RAM. Mientras la velocidad de acceso a la RAM se mide en nanosegundos (ns, la 0,000000001 parte de un segundo), la de los discos duros se mide en milisegundos; es decir, que se tarda casi un millón de veces más en acceder a un dato que encuentra en el disco duro que a uno de la RAM.
Por ende, lo ideal es necesitar lo menos posible la memoria virtual, y para eso evidentemente hay que tener la mayor cantidad de memoria RAM posible.
La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente
Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:
La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.
Tipos de RAM
Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque mas adelante en este Informe encontrará prácticamente todos los demás tipos.
DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.
Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.
Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
PC100: o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.
PC133: o SDRAM de 133 MHz. La más moderna (y recomendable).
SIMMs y DIMMs
Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.
SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).
Otros tipos de RAM
BEDO (Burst-EDO): una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.
Memorias con paridad: consisten en añadir a cualquiera de los tipos anteriores un chip que realiza una operación con los datos cuando entran en el chip y otra cuando salen. Si el resultado ha variado, se ha producido un error y los datos ya no son fiables. Dicho así, parece una ventaja; sin embargo, el ordenador sólo avisa de que el error se ha producido, no lo corrige. Es más, estos errores son tan improbables que la mayor parte de los chips no los sufren jamás aunque estén funcionando durante años; por ello, hace años que todas las memorias se fabrican sin paridad.
ECC: memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO-ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones realmente críticas. Usada en servidores y mainframes.
Memorias de Vídeo: para tarjetas gráficas. De menor a mayor rendimiento, pueden ser: DRAM -> FPM -> EDO -> VRAM -> WRAM -> SDRAM -> SGRAM
DDR-SDRAM: (Doble Data Rate)
¿Cómo es físicamente la DDR-SDRAM? O lo que es lo mismo: ¿puedo instalarla en mi "antigua" placa base? Lamentablemente, la respuesta es un NO rotundo.
Los módulos de memoria DDR-SDRAM (o DDR) son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset nuevo.
Hablando del voltaje: en principio debería ser de 2,5 V, una reducción del 30% respecto a los actuales 3,3 V de la SDRAM.
¿Cómo funciona la DDR-SDRAM?
Consiste en enviar los datos 2 veces por cada señal de reloj, una vez en cada extremo de la señal (el ascendente y el descendente), en lugar de enviar datos sólo en la parte ascendente de la señal.
De esta forma, un aparato con tecnología DDR que funcione con una señal de reloj "real", "física", de por ejemplo 100 MHz, enviará tantos datos como otro sin tecnología DDR que funcione a 200 MHz. Por ello, las velocidades de reloj de los aparatos DDR se suelen dar en lo que podríamos llamar "MHz efectivos o equivalentes" (en nuestro ejemplo, 200 MHz, "100 MHz x 2").
Uno de los problemas de la memoria Rambus: funciona a 266 MHz "físicos" o más, y resulta muy difícil (y cara) de fabricar.
La tecnología DDR está de moda últimamente, bajo éste u otro nombre. Además de las numerosísimas tarjetas gráficas con memoria de vídeo DDR-SDRAM, tenemos por ejemplo los microprocesadores AMD Athlon y Duron, cuyo bus de 200 MHz realmente es de "100 x 2", "100 MHz con doble aprovechamiento de señal"; o el AGP 2X ó 4X, con 66 MHz "físicos" aprovechados doble o cuádruplemente, ya que una tarjeta gráfica con un bus de 266 MHz "físicos" sería difícil de fabricar... y extremadamente cara.
(Atención, esto no quiere decir que una tarjeta AGP 4X sea en la realidad el doble de rápida que una 2X, ni mucho menos: a veces se "notan" IGUAL de rápidas, por motivos que no vienen al caso ahora.)
Bien, pues la DDR-SDRAM es el concepto DDR aplicado a la memoria SDRAM. Y la SDRAM no es otra que nuestra conocida PC66, PC100 y PC133, la memoria que se utiliza actualmente en casi la totalidad de los PCs normales; los 133 MHz de la PC133 son ya una cosa difícil de superar sin subir mucho los precios, y por ello la introducción del DDR.
Tipos de DDR-SDRAM y nomenclatura
Por supuesto, existe memoria DDR de diferentes clases, categorías y precios.
Lo primero, puede funcionar a 100 o 133 MHz (de nuevo, "físicos"); algo lógico, ya que se trata de SDRAM con DDR, y la SDRAM funciona a 66, 100 ó 133 MHz (por cierto, no existe DDR a 66 MHz). Si consideramos los MHz "equivalentes", estaríamos ante memorias de 200 ó 266 MHz.
En el primer caso es capaz de transmitir 1,6 GB/s (1600 MB/s), y en el segundo 2,1 GB/s (2133 MB/s). Al principio se las conocía como PC200 y PC266, siguiendo el sistema de clasificación por MHz utilizado con la SDRAM. Pero llegó Rambus y decidió que sus memorias se llamarían PC600, PC700 y PC800, también según el sistema de los MHz. Como esto haría que parecieran muchísimo más rápidas que la DDR (algo que NO SUCEDE, porque funcionan de una forma completamente distinta), se decidió denominarlas según su capacidad de transferencia en MB/s: PC1600 y PC2100 (PC2133 es poco comercial, por lo visto).
2.1- ¿Cuánta memoria debo tener?
Se podría decir que: cuanta más memoria RAM, mejor. Claro está que la memoria RAM vale dinero, así que se intentara llegar a un compromiso satisfactorio, pero nunca quedándose cortos. Ante todo, de todas formas no nos podemos quejar en los precios: hasta antes del 1996 el costo de la memoria había mantenido un costo constante de alrededor de US 40 por megabyte . A finales de 1996 los precios se habían reducido a US 4 el megabyte (una caída del 901% en menos de un año). Hoy en día la memoria RAM está a menos de US 1 por megabyte.
La cantidad de RAM necesaria es función únicamente de para qué se use un ordenador, lo que condiciona a qué sistema operativo y programas se van a usar, se recomienda una cantidad mínima de 64 MB de RAM, y si es posible incluso 128.
¿Cuánta memoria es "suficiente"?
En el mundo de los computadores, la duda siempre parece estar en si comprar un microprocesador Intel o AMD, en si será un Pentium III o un Athlon, un Celeron o un K6-2, y a cuántos MHz funcionará. Cuando se llega al tema de la memoria, la mayor parte de los compradores aceptan la cantidad que trae el sistema por defecto, lo que puede ser un gran error.
Lo más importante al comprar un computador es que sea equilibrado; nada de 800 MHz para sólo 32 MB de memoria RAM, o una tarjeta 3D de alta gama para un monitor pequeño y de mala calidad. Y como intentaremos demostrar, la cantidad de memoria del PC es uno de los factores que más puede afectar al rendimiento.
Por cierto, este trabajo se centrará en Windows 95 y 98, ya que son con diferencia los sistemas operativos más utilizados. Los resultados son perfectamente aplicables a Linux, "excepto" por su mayor estabilidad y mejor aprovechamiento de la memoria; en cuanto a Windows NT 4 y 2000, actúan de forma similar a Linux, si bien consumen entre 16 y 40 MB más de memoria que los Windows "domésticos".
Windows y la memoria virtual
Por supuesto, cuantos más programas utilicemos y más complejos sean, más memoria necesitaremos; esto seguro que no sorprenderá a nadie, pero lo que sí puede que nos sorprenda es la gran cantidad de memoria que se utiliza tan sólo para arrancar el sistema operativo. Observen los siguientes datos:
Programas cargados
RAM utilizada
Sólo Windows 95
21 MB
Sólo Windows 98
27 MB
Sólo Windows 98, tras varios meses de funcionamiento y diversas instalaciones de programas
35 MB
Windows 98, Microsoft Word 97 e Internet Explorer 4
46 MB
Windows 98 y AutoCAD 14 (con un dibujo sencillo en 2D)
55 MB
Como puede ver, sólo la carga del sistema operativo puede consumir TODA la memoria con la que se venden algunos computadores de gama baja. Además, Windows 98 utiliza más memoria que Windows 95 debido entre otros temas a su integración con Microsoft Internet Explorer. Para terminar de complicar el tema, ambos Windows tienden a aumentar su tamaño y su consumo de memoria según vamos instalando programas, o sencillamente según pasa el tiempo, sin instalar nada.
Pese a esto, el hecho es que los computadores siguen trabajando cuando se les agota la memoria RAM, algo que sería imposible si no fuera por la denominada "memoria virtual", que no es sino espacio del disco duro que se utiliza como si fuera memoria RAM.
Sin embargo, esta memoria virtual tiene varios inconvenientes; el principal es su velocidad, ya que es muchísimo más lenta que la RAM. Mientras la velocidad de acceso a la RAM se mide en nanosegundos (ns, la 0,000000001 parte de un segundo), la de los discos duros se mide en milisegundos; es decir, que se tarda casi un millón de veces más en acceder a un dato que encuentra en el disco duro que a uno de la RAM.
Por ende, lo ideal es necesitar lo menos posible la memoria virtual, y para eso evidentemente hay que tener la mayor cantidad de memoria RAM posible.
memorias de disco optico
Memorias de disco óptico
Las memorias en disco óptico almacenan información usando agujeros minúsculos grabados con un láser en la superficie de un disco circular. La información se lee iluminando la superficie con un diodo laser y observando la reflexión. Los discos ópticos son no volátil y de acceso secuencial. Los siguientes formatos son de uso común:
CD, CD-ROM, DVD: Memorias de simplemente solo lectura, usada par distribución masiva de información digital (música, vídeo, programas informáticos).
CD-R, DVD-R, DVD+R: Memorias de escritura única usada como memoria terciaria y fuera de línea.
CD-RW, DVD-RW, DVD+RW, DVD-RAM: Memoria de escritura lenta y lectura rápida usada como memoria terciaria y fuera de línea.
Blu-ray: Formato de disco óptico pensado para almacenar vídeo de alta calidad y datos. Para su desarrollo se creó la BDA, en la que se encuentran, entre otros, Sony o Phillips.
HD DVD
Se han propuesto los siguientes formatos:
HVD
Discos
Las memorias en disco óptico almacenan información usando agujeros minúsculos grabados con un láser en la superficie de un disco circular. La información se lee iluminando la superficie con un diodo laser y observando la reflexión. Los discos ópticos son no volátil y de acceso secuencial. Los siguientes formatos son de uso común:
CD, CD-ROM, DVD: Memorias de simplemente solo lectura, usada par distribución masiva de información digital (música, vídeo, programas informáticos).
CD-R, DVD-R, DVD+R: Memorias de escritura única usada como memoria terciaria y fuera de línea.
CD-RW, DVD-RW, DVD+RW, DVD-RAM: Memoria de escritura lenta y lectura rápida usada como memoria terciaria y fuera de línea.
Blu-ray: Formato de disco óptico pensado para almacenar vídeo de alta calidad y datos. Para su desarrollo se creó la BDA, en la que se encuentran, entre otros, Sony o Phillips.
HD DVD
Se han propuesto los siguientes formatos:
HVD
Discos
Suscribirse a:
Entradas (Atom)